0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (4)
  • R2,500 - R5,000 (3)
  • R5,000 - R10,000 (3)
  • -
Status
Brand

Showing 1 - 10 of 10 matches in All Departments

Handbook of Research Design in Mathematics and Science Education (Paperback): Anthony Edward Kelly, Richard A. Lesh Handbook of Research Design in Mathematics and Science Education (Paperback)
Anthony Edward Kelly, Richard A. Lesh
R1,553 Discovery Miles 15 530 Ships in 12 - 17 working days

The Handbook of Research Design in Mathematics and Science Education is based on results from an NSF-supported project (REC 9450510) aimed at clarifying the nature of principles that govern the effective use of emerging new research designs in mathematics and science education. A primary goal is to describe several of the most important types of research designs that: * have been pioneered recently by mathematics and science educators; * have distinctive characteristics when they are used in projects that focus on mathematics and science education; and * have proven to be especially productive for investigating the kinds of complex, interacting, and adapting systems that underlie the development of mathematics or science students and teachers, or for the development, dissemination, and implementation of innovative programs of mathematics or science instruction. The volume emphasizes research designs that are intended to radically increase the relevance of research to practice, often by involving practitioners in the identification and formulation of the problems to be addressed or in other key roles in the research process. Examples of such research designs include teaching experiments, clinical interviews, analyses of videotapes, action research studies, ethnographic observations, software development studies (or curricula development studies, more generally), and computer modeling studies. This book's second goal is to begin discussions about the nature of appropriate and productive criteria for assessing (and increasing) the quality of research proposals, projects, or publications that are based on the preceding kind of research designs. A final objective is to describe such guidelines in forms that will be useful to graduate students and others who are novices to the fields of mathematics or science education research. The NSF-supported project from which this book developed involved a series of mini conferences in which leading researchers in mathematics and science education developed detailed specifications for the book, and planned and revised chapters to be included. Chapters were also field tested and revised during a series of doctoral research seminars that were sponsored by the University of Wisconsin's OERI-supported National Center for Improving Student Learning and Achievement in Mathematics and Science. In these seminars, computer-based videoconferencing and www-based discussion groups were used to create interactions in which authors of potential chapters served as "guest discussion leaders" responding to questions and comments from doctoral students and faculty members representing more than a dozen leading research universities throughout the USA and abroad. A Web site with additional resource materials related to this book can be found at http://www.soe.purdue.edu/smsc/lesh/ This internet site includes directions for enrolling in seminars, participating in ongoing discussion groups, and submitting or downloading resources which range from videotapes and transcripts, to assessment instruments or theory-based software, to publications or data samples related to the research designs being discussed.

Handbook of Research Design in Mathematics and Science Education (Hardcover): Anthony Edward Kelly, Richard A. Lesh Handbook of Research Design in Mathematics and Science Education (Hardcover)
Anthony Edward Kelly, Richard A. Lesh
R8,593 Discovery Miles 85 930 Ships in 12 - 17 working days

The Handbook of Research Design in Mathematics and Science Education is based on results from an NSF-supported project (REC 9450510) aimed at clarifying the nature of principles that govern the effective use of emerging new research designs in mathematics and science education. A primary goal is to describe several of the most important types of research designs that: * have been pioneered recently by mathematics and science educators; * have distinctive characteristics when they are used in projects that focus on mathematics and science education; and * have proven to be especially productive for investigating the kinds of complex, interacting, and adapting systems that underlie the development of mathematics or science students and teachers, or for the development, dissemination, and implementation of innovative programs of mathematics or science instruction. The volume emphasizes research designs that are intended to radically increase the relevance of research to practice, often by involving practitioners in the identification and formulation of the problems to be addressed or in other key roles in the research process. Examples of such research designs include teaching experiments, clinical interviews, analyses of videotapes, action research studies, ethnographic observations, software development studies (or curricula development studies, more generally), and computer modeling studies. This book's second goal is to begin discussions about the nature of appropriate and productive criteria for assessing (and increasing) the quality of research proposals, projects, or publications that are based on the preceding kind of research designs. A final objective is to describe such guidelines in forms that will be useful to graduate students and others who are novices to the fields of mathematics or science education research. The NSF-supported project from which this book developed involved a series of mini conferences in which leading researchers in mathematics and science education developed detailed specifications for the book, and planned and revised chapters to be included. Chapters were also field tested and revised during a series of doctoral research seminars that were sponsored by the University of Wisconsin's OERI-supported National Center for Improving Student Learning and Achievement in Mathematics and Science. In these seminars, computer-based videoconferencing and www-based discussion groups were used to create interactions in which authors of potential chapters served as "guest discussion leaders" responding to questions and comments from doctoral students and faculty members representing more than a dozen leading research universities throughout the USA and abroad. A Web site with additional resource materials related to this book can be found at http://www.soe.purdue.edu/smsc/lesh/ This internet site includes directions for enrolling in seminars, participating in ongoing discussion groups, and submitting or downloading resources which range from videotapes and transcripts, to assessment instruments or theory-based software, to publications or data samples related to the research designs being discussed.

Assessment of Authentic Performance in School Mathematics (Hardcover): Richard A. Lesh, Susan J. Lamon Assessment of Authentic Performance in School Mathematics (Hardcover)
Richard A. Lesh, Susan J. Lamon
R2,800 Discovery Miles 28 000 Ships in 12 - 17 working days

This book is the result of a conference sponsored by the Educational Testing Service and the University of Wisconsin's National Center for Research in Mathematical Sciences Education. The purpose of the conference was to facilitate the work of a group of scholars whose interests included the assessment of higher-order understandings and processes in foundation-level (pre-high school) mathematics. Discussions focused on such issues as the purposes of assessment, guidelines for producing and scoring "real-life" assessment activities, and the meanings of such terms as "deeper and higher-order understanding," "cognitive objectives," and "authentic mathematical activities." Assessment was viewed as a critical component of complex, dynamic, and continually adapting educational systems. During the time that the chapters in this book were being written, sweeping changes in mathematics education were being initiated in response to powerful recent advances in technology, cognitive psychology, and mathematics, as well as to numerous public demands for educational reform. These changes have already resulted in significant reappraisals of what it means to understand mathematics, of the nature of mathematics teaching and learning, and of the real-life situations in which mathematics is useful. The challenge was to pursue assessment-related initiatives that are systematically valid, in the sense that they work to complement and enhance other improvements in the educational system rather than act as an impediment to badly needed curriculum reforms. To address these issues, most chapters in this book focus on clarifying and articulating the goals of assessment and instruction, and they stress the content of assessment above its mode of delivery. Computer- or portfolio-based assessments are interpreted as means to ends, not as ends in themselves. Assessment is conceived as an ongoing documentation process, seamless with instruction, whose quality hinges upon its ability to provide complete and appropriate information as needed to inform priorities in instructional decision making. This book tackles some of the most complicated issues related to assessment, and it offers fresh perspectives from leaders in the field--with the hope that the ultimate consumer in the instruction/assessment enterprise, the individual student, will reclaim his or her potential for self-directed mathematics learning.

Models and Modeling Perspectives - A Special Double Issue of mathematical Thinking and Learning (Paperback, Illustrated Ed):... Models and Modeling Perspectives - A Special Double Issue of mathematical Thinking and Learning (Paperback, Illustrated Ed)
Richard A. Lesh
R1,545 Discovery Miles 15 450 Ships in 12 - 17 working days

This special issue of Mathematical Thinking and Learning describes models and modeling perspectives toward mathematics problem solving, learning, and teaching. The concern is not only the mature forms of models and modeling in communities of scientists and mathematicians, but also the need to initiate students in these forms of thought. The contributions of this issue suggest a variety of ways that students (children through adults) can be introduced to highly productive forms of modeling practices. Collectively, they illustrate how modeling activities often lead to remarkable mathematical achievements by students formerly judged to be too young or too lacking in ability for such sophisticated and powerful forms of mathematical thinking. The papers also illustrate how modeling activities often create productive interdisciplinary niches for mathematical thinking, learning, and problem solving that involve simulations of similar situations that occur when mathematics is useful beyond school.

Models and Modeling Perspectives - A Special Double Issue of mathematical Thinking and Learning (Hardcover): Richard A. Lesh Models and Modeling Perspectives - A Special Double Issue of mathematical Thinking and Learning (Hardcover)
Richard A. Lesh
R5,326 Discovery Miles 53 260 Ships in 12 - 17 working days

This special issue of Mathematical Thinking and Learning describes models and modeling perspectives toward mathematics problem solving, learning, and teaching. The concern is not only the mature forms of models and modeling in communities of scientists and mathematicians, but also the need to initiate students in these forms of thought. The contributions of this issue suggest a variety of ways that students (children through adults) can be introduced to highly productive forms of modeling practices. Collectively, they illustrate how modeling activities often lead to remarkable mathematical achievements by students formerly judged to be too young or too lacking in ability for such sophisticated and powerful forms of mathematical thinking. The papers also illustrate how modeling activities often create productive interdisciplinary niches for mathematical thinking, learning, and problem solving that involve simulations of similar situations that occur when mathematics is useful beyond school.

Assessment of Authentic Performance in School Mathematics (Paperback): Richard A. Lesh, Susan J. Lamon Assessment of Authentic Performance in School Mathematics (Paperback)
Richard A. Lesh, Susan J. Lamon
R1,053 Discovery Miles 10 530 Ships in 12 - 17 working days

This book is the result of a conference sponsored by the Educational Testing Service and the University of Wisconsin's National Center for Research in Mathematical Sciences Education. The purpose of the conference was to facilitate the work of a group of scholars whose interests included the assessment of higher-order understandings and processes in foundation-level (pre-high school) mathematics. Discussions focused on such issues as the purposes of assessment, guidelines for producing and scoring "real-life" assessment activities, and the meanings of such terms as "deeper and higher-order understanding," "cognitive objectives," and "authentic mathematical activities." Assessment was viewed as a critical component of complex, dynamic, and continually adapting educational systems. During the time that the chapters in this book were being written, sweeping changes in mathematics education were being initiated in response to powerful recent advances in technology, cognitive psychology, and mathematics, as well as to numerous public demands for educational reform. These changes have already resulted in significant reappraisals of what it means to understand mathematics, of the nature of mathematics teaching and learning, and of the real-life situations in which mathematics is useful. The challenge was to pursue assessment-related initiatives that are systematically valid, in the sense that they work to complement and enhance other improvements in the educational system rather than act as an impediment to badly needed curriculum reforms. To address these issues, most chapters in this book focus on clarifying and articulating the goals of assessment and instruction, and they stress the content of assessment above its mode of delivery. Computer- or portfolio-based assessments are interpreted as means to ends, not as ends in themselves. Assessment is conceived as an ongoing documentation process, seamless with instruction, whose quality hinges upon its ability to provide complete and appropriate information as needed to inform priorities in instructional decision making. This book tackles some of the most complicated issues related to assessment, and it offers fresh perspectives from leaders in the field--with the hope that the ultimate consumer in the instruction/assessment enterprise, the individual student, will reclaim his or her potential for self-directed mathematics learning.

Beyond Constructivism - Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching (Paperback,... Beyond Constructivism - Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching (Paperback, New)
Richard A. Lesh, Helen M. Doerr
R2,520 Discovery Miles 25 200 Ships in 12 - 17 working days

This book has two primary goals. On the level of theory development, the book clarifies the nature of an emerging "models and modeling perspective" about teaching, learning, and problem solving in mathematics and science education. On the level of emphasizing practical problems, it clarifies the nature of some of the most important elementary-but-powerful mathematical or scientific understandings and abilities that Americans are likely to need as foundations for success in the present and future technology-based information age. Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching features an innovative Web site housing online appendices for each chapter, designed to supplement the print chapters with digital resources that include example problems, relevant research tools and video clips, as well as transcripts and other samples of students' work: http://tcct.soe.purdue.edu/booksULandULjournals/modelsULandUL modeling/ This is an essential volume for graduate-level courses in mathematics and science education, cognition and learning, and critical and creative thinking, as well as a valuable resource for researchers and practitioners in these areas.

Foundations for the Future in Mathematics Education (Paperback): Richard A. Lesh, Eric Hamilton, James J. Kaput Foundations for the Future in Mathematics Education (Paperback)
Richard A. Lesh, Eric Hamilton, James J. Kaput
R1,921 Discovery Miles 19 210 Ships in 12 - 17 working days

The central question addressed in Foundations for the Future in Mathematics Education is this: What kind of understandings and abilities should be emphasized to decrease mismatches between the narrow band of mathematical understandings and abilities that are emphasized in mathematics classrooms and tests, and those that are needed for success beyond school in the 21st century? This is an urgent question. In fields ranging from aeronautical engineering to agriculture, and from biotechnologies to business administration, outside advisors to future-oriented university programs increasingly emphasize the fact that, beyond school, the nature of problem-solving activities has changed dramatically during the past twenty years, as powerful tools for computation, conceptualization, and communication have led to fundamental changes in the levels and types of mathematical understandings and abilities that are needed for success in such fields. For K-12 students and teachers, questions about the changing nature of mathematics (and mathematical thinking beyond school) might be rephrased to ask: If the goal is to create a mathematics curriculum that will be adequate to prepare students for informed citizenship-as well as preparing them for career opportunities in learning organizations, in knowledge economies, in an age of increasing globalization-how should traditional conceptions of the 3Rs be extended or reconceived? Overall, this book suggests that it is not enough to simply make incremental changes in the existing curriculum whose traditions developed out of the needs of industrial societies. The authors, beyond simply stating conclusions from their research, use results from it to describe promising directions for a research agenda related to this question. The volume is organized in three sections: *Part I focuses on naturalistic observations aimed at clarifying what kind of "mathematical thinking" people really do when they are engaged in "real life" problem solving or decision making situations beyond school. *Part II shifts attention toward changes that have occurred in kinds of elementary-but-powerful mathematical concepts, topics, and tools that have evolved recently-and that could replace past notions of "basics" by providing new foundations for the future. This section also initiates discussions about what it means to "understand" the preceding ideas and abilities. *Part III extends these discussions about meaning and understanding-and emphasizes teaching experiments aimed at investigating how instructional activities can be designed to facilitate the development of the preceding ideas and abilities. Foundations for the Future in Mathematics Education is an essential reference for researchers, curriculum developers, assessment experts, and teacher educators across the fields of mathematics and science education.

Foundations for the Future in Mathematics Education (Hardcover): Richard A. Lesh, Eric Hamilton, James J. Kaput Foundations for the Future in Mathematics Education (Hardcover)
Richard A. Lesh, Eric Hamilton, James J. Kaput
R5,371 Discovery Miles 53 710 Ships in 12 - 17 working days

The central question addressed in Foundations for the Future in Mathematics Education is this: What kind of understandings and abilities should be emphasized to decrease mismatches between the narrow band of mathematical understandings and abilities that are emphasized in mathematics classrooms and tests, and those that are needed for success beyond school in the 21st century? This is an urgent question. In fields ranging from aeronautical engineering to agriculture, and from biotechnologies to business administration, outside advisors to future-oriented university programs increasingly emphasize the fact that, beyond school, the nature of problem-solving activities has changed dramatically during the past twenty years, as powerful tools for computation, conceptualization, and communication have led to fundamental changes in the levels and types of mathematical understandings and abilities that are needed for success in such fields. For K-12 students and teachers, questions about the changing nature of mathematics (and mathematical thinking beyond school) might be rephrased to ask: If the goal is to create a mathematics curriculum that will be adequate to prepare students for informed citizenship-as well as preparing them for career opportunities in learning organizations, in knowledge economies, in an age of increasing globalization-how should traditional conceptions of the 3Rs be extended or reconceived? Overall, this book suggests that it is not enough to simply make incremental changes in the existing curriculum whose traditions developed out of the needs of industrial societies. The authors, beyond simply stating conclusions from their research, use results from it to describe promising directions for a research agenda related to this question. The volume is organized in three sections: *Part I focuses on naturalistic observations aimed at clarifying what kind of "mathematical thinking" people really do when they are engaged in "real life" problem solving or decision making situations beyond school. *Part II shifts attention toward changes that have occurred in kinds of elementary-but-powerful mathematical concepts, topics, and tools that have evolved recently-and that could replace past notions of "basics" by providing new foundations for the future. This section also initiates discussions about what it means to "understand" the preceding ideas and abilities. *Part III extends these discussions about meaning and understanding-and emphasizes teaching experiments aimed at investigating how instructional activities can be designed to facilitate the development of the preceding ideas and abilities. Foundations for the Future in Mathematics Education is an essential reference for researchers, curriculum developers, assessment experts, and teacher educators across the fields of mathematics and science education.

Foundations for the Future in Mathematics Education (Book): Richard A. Lesh, Eric Hamilton, James J. Kaput Foundations for the Future in Mathematics Education (Book)
Richard A. Lesh, Eric Hamilton, James J. Kaput
R4,274 R3,179 Discovery Miles 31 790 Save R1,095 (26%) Out of stock
Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Electrogenerated Chemiluminescence
Ferguson Paperback R1,996 Discovery Miles 19 960
Tipping Point: Turmoil Or Reform…
Raymond Parsons Paperback R300 R219 Discovery Miles 2 190
Fractal Surfaces
John C. Russ Hardcover R5,959 Discovery Miles 59 590
Safari Nation - A Social History Of The…
Jacob Dlamini Paperback R320 R250 Discovery Miles 2 500
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet Paperback R399 R343 Discovery Miles 3 430
20th Century Organ Masterpieces
John Scott CD R233 Discovery Miles 2 330
ABC Science Book
Anjali Joshi Paperback R241 R200 Discovery Miles 2 000
100 Best Encores
Niccolo Paganini, Franz Liszt, … CD R111 Discovery Miles 1 110
Howard's Whirlybirds - Howard Hughes…
Donald J. Porter Paperback R530 R434 Discovery Miles 4 340
Gangster - Ware Verhale Van Albei Kante…
Carla van der Spuy Paperback R315 R271 Discovery Miles 2 710

 

Partners